One-pot synthesis of heterocyclic compounds initiated by chemoselective addition to β-acyl substituted unsaturated aldehydes with nucleophilic tin complexes

Ikuya Shibata *, Hirofumi Kato, Makoto Yasuda, Akio Baba
Department of Applied Chemistry, Graduate School of Engineering, Research Center for Environmental Preservation, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Received 15 February 2006; received in revised form 13 March 2006; accepted 20 March 2006
Available online 30 August 2006

Abstract

β-Acyl substituted unsaturated aldehydes 1 were revealed to be good precursors for the synthesis of various heterocyclic compounds by the combination with tin nucleophiles. Various 2-monosubstituted pyrroles were prepared in an one-pot procedure via the reductive amination of formyl groups of $\mathbf{1}$ by using $\mathrm{Bu}_{2} \mathrm{SnIH}-\mathrm{HMPA}$ complex. One-pot synthesis of heterocycles was carried out initiated by chemoselective reduction of $\mathbf{1}$ with $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{HMPA}$ complex and the subsequent reaction with heterocumulenes. Furthermore, the one-pot synthesis of nitrogen heterocyclic compounds accompanying chemo-, regio- and diastereoselective carbon-carbon bond formation in side chain moieties was effectively accomplished initiated by the regio- and diastereoselective allylation of the formyl group of $\mathbf{1}$ with allylic tin species.

© 2006 Elsevier B.V. All rights reserved.
Keywords: Heterocycle; Reductive amination; Reduction; Allylation; Tin hydride; Allylic tin

1. Introduction

Tin-heteroatom bonds can be easily generated by the addition of organotin nucleophiles to carbonyl compounds [1]. The reduction of carbonyl compounds by tributyltin hydride $\left(\mathrm{Bu}_{3} \mathrm{SnH}\right)$ is a well-known method [2]. Although the reactions proceed under mild and neutral conditions, the resulting tin alkoxides have been scarcely used for further transformation in which most tin-oxygen bonds are hydrolyzed to alcohols. However, tin-oxygen and nitrogen bonds bear high nucleophilicity. In some cases, their nucleophilicity is higher than that of the corresponding free alcohols and amines [3]. Herein we report the onepot synthesis of heterocycles initiated by the chemoselective addition of bifunctional compounds $\mathbf{1}$. The generated tinheteroatom bonds worked as key intermediates (Scheme 1).

[^0]
2. Results and discussion

2.1. One-pot synthesis of 2-monosubstituted pyrroles by reductive amination

We have been developing the unique reactivities of the halogen-substituted tin hydride systems such as $\mathrm{Bu}_{2} \mathrm{SnIH}$ and $\mathrm{Bu}_{2} \mathrm{SnClH}-\mathrm{HMPA}$ which promote effective reduction of imines [4]. In particular, $\mathrm{Bu}_{2} \mathrm{SnClH}-\mathrm{HMPA}$ affords effective reductive amination to give a wide range of secondary and tertiary amines in one-pot procedures [5]. Pyrroles are important heterocycles broadly used in materials science [6] and found in naturally occurring and biologically important molecules [7]. Accordingly, substantial attention has been paid to develop efficient methods for the synthesis of pyrroles, most known methods are for forming 2,5-di- or polysubstituted pyrroles. Convenient methods have scarcely reported for the construction of 2-monosubstituted pyrrole ring [8]. Herein a novel, and

Scheme 1. Reaction concept for synthesis of heterocycles.

Scheme 2.
efficient method for construction of 2-monosubstituted pyrroles was developed via the reductive amination by dibutyliodotin hydride $\left(\mathrm{Bu}_{2} \mathrm{SnIH}\right)-\mathrm{HMPA}$ system (Scheme 2) [9].

As shown in Table 1, first, it was found that enal 1a in the presence of iodotin hydride in THF at $0^{\circ} \mathrm{C}$ for 2 h underwent reductive amination with p-chloroaniline to give secondary amine 3a in 74% yield (entry 1). Although no cyclization occurred, this result indicates that reductive amination was carried out effectively without affecting the remaining enone functionality in 1a. Chloro-substituent on nitrogen aromatic ring was not reduced. After the reductive amination, heating the mixture at $80^{\circ} \mathrm{C}$ for 2 h afforded pyrrole $\mathbf{2 a}$ in 22% yield with 60% of $\mathbf{3 a}$ (entry 2). In this case, 1,4-dioxane was used as a solvent to heat the reaction mixture at $80^{\circ} \mathrm{C}$. Noteworthy is that under the same conditions, pyrrole $\mathbf{2 a}$ was obtained in 81% yield in the presence of an equimolar amount of HMPA (entry 3), in which non-cyclized product 3a was not obtained at all. The iodo-substituent on the tin center was essential
for the cyclization because chlorotin derivative, $\mathrm{Bu}_{2} \mathrm{Sn}$ -$\mathrm{ClH}-\mathrm{HMPA}$, gave no pyrrole 2a at all where only 3a was obtained under the same conditions (entry 4). Various aromatic amines were applicable to give pyrroles $\mathbf{2 b} \mathbf{- d}$ in one-pot procedures by the reductive amination of 1 using $\mathrm{Bu}_{2} \mathrm{SnIH}-\mathrm{HMPA}$ system followed by heating at $80^{\circ} \mathrm{C}$ (entries 5-7). In the case of $\mathbf{1 b}$, pyrrole $\mathbf{2 e}$ was also obtained (entry 8). Enal having aromatic ketone $\mathbf{1 c}$ was also reactive to give the corresponding pyrroles $\mathbf{2 f}-\mathbf{h}$ where reductive amination was carried out at $-40^{\circ} \mathrm{C}$ (entries 9-11).

A plausible reaction course is indicated in Scheme 3. Initially, reductive amination occurs by mixing $\mathrm{Bu}_{2} \mathrm{SnIH}-$ HMPA with starting substrate $\mathbf{1}$ and an aromatic amine. It is cleared that halogenotin hydride bears high imineselectivity because formyl and enone groups of $\mathbf{1}$ were not reduced at all. In the next stage, the resulting tin-nitrogen bond adds to the remaining ketone moiety in $\mathbf{1}$ by heating. At the last stage, the elimination of tin hydroxide gives pyrroles 2. The reaction was carried out in a one-pot procedure hence no intermediates were isolated. The substitu-

Table 1
One-pot synthesis of 2-monosubtituted pyrroles $2\left(1 \mathrm{mmol}\right.$ of $\mathbf{1}, 1 \mathrm{mmol}$ of $\mathrm{ArNH}_{2}, 1 \mathrm{mmol}$ of tin hydride, 1 mmol of $\mathrm{HMPA}, 1 \mathrm{~mL}$ of solvent)

Entry	R	Ar	Tin hydride	Solvent	Conditions 1	Conditions 2	Product and yield (\%)
1	$n-\mathrm{C}_{8} \mathrm{H}_{17}(\mathbf{1 a})$	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{Bu}_{2} \mathrm{SnIH}$	THF	$0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	$0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	3a 74
2			$\mathrm{Bu}_{2} \mathrm{SnIH}$	Dioxane	$0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	$80^{\circ} \mathrm{C}, 2 \mathrm{~h}$	2a 22, 3a 60
3			$\mathrm{Bu}_{2} \mathrm{SnIH}-\mathrm{HMPA}$	Dioxane	$0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	$80^{\circ} \mathrm{C}, 2 \mathrm{~h}$	2a 81
4			$\mathrm{Bu}_{2} \mathrm{SnClH}-\mathrm{HMPA}$	Dioxane	$0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	$80^{\circ} \mathrm{C}, 2 \mathrm{~h}$	3a 98
5		Ph	$\mathrm{Bu}_{2} \mathrm{SnIH}-\mathrm{HMPA}$	Dioxane	$0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	$80^{\circ} \mathrm{C}, 2 \mathrm{~h}$	2b 54
6		p-Tol	$\mathrm{Bu}_{2} \mathrm{SnIH}-\mathrm{HMPA}$	Dioxane	$0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	$80^{\circ} \mathrm{C}, 2 \mathrm{~h}$	2c 60
7		$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	$\mathrm{Bu}_{2} \mathrm{SnIH}-\mathrm{HMPA}$	Dioxane	$0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	$80^{\circ} \mathrm{C}, 2 \mathrm{~h}$	2d 66
8	$\mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}(\mathbf{1 b})$	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{Bu}_{2} \mathrm{SnIH}-\mathrm{HMPA}$	THF	$0^{\circ} \mathrm{C}, 2 \mathrm{~h}$	$60^{\circ} \mathrm{C}, 2 \mathrm{~h}$	2e 60
9	Ph (1c)	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{Bu}_{2} \mathrm{SnIH}$-HMPA	THF	$-40^{\circ} \mathrm{C}, 2 \mathrm{~h}$	$60^{\circ} \mathrm{C}, 2 \mathrm{~h}$	2f 46
10		Ph	$\mathrm{Bu}_{2} \mathrm{SnIH}-\mathrm{HMPA}$	THF	$-40^{\circ} \mathrm{C}, 2 \mathrm{~h}$	$60^{\circ} \mathrm{C}, 2 \mathrm{~h}$	2g 41
11		$p-\mathrm{MeOC}_{6} \mathrm{H}_{4}$	$\mathrm{Bu}_{2} \mathrm{SnIH}-\mathrm{HMPA}$	THF	$-40^{\circ} \mathrm{C}, 2 \mathrm{~h}$	$60^{\circ} \mathrm{C}, 2 \mathrm{~h}$	2h 49

Scheme 3. A plausible reaction mechanism.
ent and ligand in the tin complex play important roles for the synthesis of pyrroles. $\mathrm{Bu}_{2} \mathrm{SnIH}-\mathrm{HMPA}$ is a trigonal bipyramidal structure in which iodine substituent occupy apical position [10]. The Sn -halogen bond is responsible for high imine-selectivity, which promotes the formation of an iminium ion \mathbf{A}. As a result, electrophilicity of imine is increased $[4,5]$. The activated imine thus formed would be reduced more rapidly than any other functionalities such as starting formyl and enone moieties. After the imine-selective reduction, tin-nitrogen bond is formed. High coordination of tin is important for the intramolecular addition. Namely, in the pentavalent tin amide B, the tin-nitrogen bond occupying the apical position bears adequate nucleophilicity to the remaining carbonyl groups [11]. It seems that dibutylchlorotin amide moiety ($\mathrm{Bu}_{2} \mathrm{ClSnN}-$) does not have enough nucleophilicity to cause cyclization because of the electron-withdrawing character of Cl substituent (entry 4).

2.2. One-pot synthesis of heterocycles initiated by chemoselective reduction

Next, the one-pot synthesis of heterocycles was carried out initiated by the chemoselective reduction of the formyl groups of bifunctional compounds $\mathbf{1}$ [12]. The generated tin-oxygen bonds worked as key intermediates. Hetero-
atom nucleophiles were generated by the combination of heterocumulenes (Scheme 4).

For the selective reduction of the formyl groups of $\mathbf{1}$, the choice of reducing agents is important, because of coexistence reactive functionalities of enones. As shown in Table 2, use of conventional agents such as LiAlH_{4} and NaBH_{4} resulted in complex reactions (entries 1-3). Tributyltin hydride $\left(\mathrm{Bu}_{3} \mathrm{SnH}\right)$ itself bears little reducing ability (entry 4). The $\mathrm{Bu}_{3} \mathrm{SnH}$ reaction catalyzed by Lewis acid [13] gave only $\mathbf{4 a}$, though in moderate yields (entries 5 and 6). We had already developed $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{HMPA}$ to effect chemoselective reduction of formyl groups under mild conditions [14], and here $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{HMPA}$ was found to reduce the formyl group of $\mathbf{1 a}$ in the highest yield (entry 7). Dibutylchlorotin hydride $\left(\mathrm{Bu}_{2} \mathrm{ClSnH}\right)$ complex [15] also gave good yield of $\mathbf{4 a}$ (entry 8). In these cases, other products than 4a-d were not obtained and starting 1a was recovered. This would be because of the decomposition of tin hydrides.

As shown in Scheme 5, we next tried to prepare heterocycles through initiation by tin hydride reduction in onepot procedure. Thus, after the chemoselective reduction of the formyl group of $\mathbf{1}$, the generated tin-oxygen bond of \mathbf{C} was allowed to react with an isocyanate [16]. The resulting tin-nitrogen bond of \mathbf{D} successively adds to the enone moiety in conjugate fashion to give 2-oxazolidinones

Scheme 4. Reaction concept for synthesis of heterocycles.

Table 2
Chemoselective reduction of formyl group of $\mathbf{1 a}$. (1 mmol of $\mathrm{MH}, 1 \mathrm{mmol}$ of $\mathbf{1 a}, 1 \mathrm{~mL}$ of THF)

Entry	Reducing agent ($\mathrm{M}-\mathrm{H}$)	Conditions	Product and yield (\%)
1	DIBAL (1 mmol)	$0^{\circ} \mathrm{C}, 5 \mathrm{~h}$	4a 25, 4b 31
2	$\mathrm{NaBH}_{4}(1 \mathrm{mmol})$	$\mathrm{rt}, 1.5 \mathrm{~h}$	4d 61
3	$\mathrm{LiAlH}_{4}(1 \mathrm{mmol})$	$0^{\circ} \mathrm{C}, 1 \mathrm{~h}$	4b 33, 4c 12
4	$\mathrm{Bu}_{3} \mathrm{SnH}(1 \mathrm{mmol})$	$\mathrm{rt}, 23 \mathrm{~h}$	Trace
5	$\mathrm{Bu}_{3} \mathrm{SnH}(1 \mathrm{mmol})-\mathrm{ZnCl}_{2}(0.1 \mathrm{mmol})$	$\mathrm{rt}, 23 \mathrm{~h}$	4a 40
6	$\mathrm{Bu}_{3} \mathrm{SnH}(1 \mathrm{mmol})-\mathrm{MgBr}_{2}(0.1 \mathrm{mmol})$	$\mathrm{rt}, 14 \mathrm{~h}$	4a 35
7	$\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{HMPA}(1 \mathrm{mmol})$	$\mathrm{rt}, 3 \mathrm{~h}$	4a 56
8	$\mathrm{Bu}_{2} \mathrm{ClSnH}-\mathrm{HMPA}(1 \mathrm{mmol})$	$\mathrm{rt}, 3 \mathrm{~h}$	4a 51

Scheme 5.
5. In the tin hydride initiated reductions presented here, use of dibutylchlorotin hydride system ($\mathrm{Bu}_{2} \mathrm{ClSnH}-\mathrm{HMPA}$) and the subsequent treatment with $\mathrm{BuN}=\mathrm{C}=\mathrm{O}$ gave the desired 2 -oxazolidone 5a in only 37% yield, although the initial reduction of the formyl group proceeded effectively (see Table 2, entry 8). In contrast, the reduction of $\mathbf{1}$ with tributyltin nucleophile ($\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{HMPA}$) and subsequent treatment with $\mathrm{BuN}=\mathrm{C}=\mathrm{O}$ afforded 2-oxazolidones 5a in a good yield (84%). 2-Oxazolidones are important biologically active compounds and precursors of β-amino alcohols [17].

The role of the $\mathrm{Sn}-\mathrm{N}$ bond of \mathbf{D} is clearly important because linear compound $\mathbf{6}$ which bears no tin moiety did not afford intramolecular conjugate addition under the same conditions (Scheme 6).
$\mathrm{Bu}_{3} \mathrm{SnN}$ moieties have fundamentally higher nucleophilicity than $\mathrm{ClBu}_{2} \mathrm{SnN}$ moieties because of the presence of the electron-withdrawing Cl substituent in the latter case. Hence, $\mathrm{Bu}_{3} \mathrm{SnN}$ moieties worked effectively in the presented conjugate addition. HMPA also plays an important role in the conjugate addition besides the chemoselective
reduction of the formyl group in $\mathbf{1}$, in the generation of nucleophilic pentacoordinate tin amides \mathbf{D} [11]. It is clear that no intramolecular conjugate addition takes place in the absence of HMPA, because the ZnCl_{2}-catalyzed $\mathrm{Bu}_{3} \mathrm{SnH}$ reduction (Table 2, entry 5) and the subsequent reaction with $\mathrm{BuN}=\mathrm{C}=\mathrm{O}$ at $60^{\circ} \mathrm{C}$ for 2 h gave only the linear compound 6. As shown in Table 3, various 2-oxazolidones 5 were prepared by $\mathrm{Bu}_{3} \mathrm{SnH}-\mathrm{HMPA}$. Aliphatic, allylic, secondary alkyl and aromatic isocyanates were reactive towards $\mathbf{1 a}$, giving the corresponding 2 -oxazolidones 5a-f in good to excellent yields (entries 1-6). Use of substrates $\mathbf{1 c}$, \mathbf{d} having aromatic ketone moieties also gave 2 -oxazolidone $\mathbf{5 h}$ and $\mathbf{5 i}$ (entries 8 and 9).

The advantage of this method includes the potential to use other heterocumulenes instead of isocyanates, giving a variety of heterocycles. Use of phenyl isothiocyanate afforded oxazolidin-2-thione 7 (Scheme 7). In this case, it was known that tin-oxygen bond should add across the $\mathrm{C}=\mathrm{S}$ bond of isothiocyanates to give \mathbf{E} because strong affinity of tin to sulfur atom [16b]. The subsequent intramolecular conjugate addition occurs from the terminal imino-nitrogen

Scheme 6.

Table 3
Synthesis of 2-oxazolidones (1 mmol of $\mathbf{1}, 1 \mathrm{mmol}$ of $\mathrm{Bu}_{3} \mathrm{SnH}$-HMPA, 0.8 mmol of isocyanate, 1 mL of THF)

Entry	$\mathrm{R}^{1}(\mathbf{1})$	R^{2}	Product and yield (\%)
1	$n-\mathrm{C}_{8} \mathrm{H}_{17}(\mathbf{1 a})$	Bu	84
2		$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2}$	$\mathbf{5 a}$
3		$\mathrm{ClCH}_{2} \mathrm{CH}_{2}$	$\mathbf{5 b}$
4		PhCH_{2}	$\mathbf{5 c}$
5		$\left.\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	$\mathbf{5 d}$
6		Bu	$\mathbf{5 e}$
7	Bu	$\mathbf{5}$	
8	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{3}(\mathbf{1 b})$	Bu	75
9	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{1 d})$		$\mathbf{5 g}$

atom. The use of CO_{2} as a heterocumulene did not afford cyclic products plausibly because of lower reactivity of tin-oxygen bond than $\mathrm{Sn}-\mathrm{N}$ bonds in the conjugate addition.

As shown in Scheme 8, use of diphenylketene afforded the γ-lactone $\mathbf{8}$ through the intramolecular conjugate addition of tin enolate \mathbf{F}. The conjugate addition occurred through C-alkylation of tin enolate. This result is in contrast to our previous intramolecular reaction with alkyl halides to cause O-alkylation [18].

Electrophiles other than heterocumulenes were also applicable (Scheme 9). An electrophilic alkene reacted with the $\mathrm{Sn}-\mathrm{O}$ bond of \mathbf{C} to give intermediate \mathbf{G}, and intramolecular addition proceeded to give cyclic ether $\mathbf{9}$ in a onepot procedure. When \mathbf{C} was treated with diketene, the $\alpha-$ acyl $-\gamma$-lactone 10 was obtained, so the ring cleavage of
diketene occurred at the acyl carbon-oxygen bond [19]. After isomerization to the stable tin enolate \mathbf{H}, the intramolecular conjugate addition took place.
2.3. One-pot synthesis of nitrogen heterocycles initiated by
regio- and diastereoselective carbon-carbon bond formation

Next, a one-pot synthesis of nitrogen heterocyclic compounds was carried out initiated by the allylation of the formyl group of bifunctional carbonyl compounds $\mathbf{1}$ [20]. The generated tin-oxygen bonds worked as key intermediates to prepare various heterocyclic compounds accompanying chemo-, regio- and diastereoselective car-bon-carbon bond formation in the side chain moieties. Allylic tributyltins bear low reactivities toward carbonyl groups. To achieve effective allylation, representative

Scheme 8.

Scheme 9.

Lewis acids such as TiCl_{4} and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ have been used as activators of carbonyl substrates [21]. However, these conventional Lewis acids did not afford chemoselective allylation of the formyl groups of bifunctional substrates 1 because of their instability to acids. We fortunately found here that allylic chlorodibutyltin (11) system [22] effectively reacted with the formyl group of substrate $\mathbf{1}$ without any strong Lewis acids. The allylation was highly chemoselective to the formyl group where the enone moiety of 1a did not react at all. As shown in Table 4, after the allylation, the successive reaction with an isocyanate followed by heating afforded 4,5-trans-disubstituted-2oxazolidinones 12a and 12b selectively (entries 3 and 4). The chloro substituents on the tin center are essential because allyltributyltin (11a) was not reactive at all (entry 1). In addition, HMPA is essential to cause the cyclization to give $\mathbf{1 2}$ because only linear adduct $\mathbf{1 3}$ was obtained in the absence of HMPA (entry 2). The reaction course to $\mathbf{1 2}$ is explained as shown in the equation of Table 4. After the chemoselective allylation of the formyl group, the generated tin-oxygen bond of I reacts with an isocyanate spontaneously. As a result, an adduct \mathbf{J} is formed. The resulting tin-nitrogen bond successively adds to the enone
moieties of $\mathbf{1}$ in a fashion of conjugate addition to give 2-oxazolidinones $\mathbf{1 2}$ in a one-pot procedure. HMPA plays an important role for the conjugate addition of the stannylcarbamate \mathbf{J} where HMPA coordinates to the tin center to form pentacoordinate tin amide species, increasing their nucleophilicity [11]. The intramolecular conjugate addition did not take place at all in the absence of HMPA. The activating effect of HMPA to silicon species was also discussed [23].
[$\left.\mathrm{ClBu}_{2} \mathrm{Sn}\right] \mathrm{N}$ - nucleophiles work well here in comparison with the reaction involving $\mathrm{Bu}_{2} \mathrm{SnClH}$-reduction (Scheme 5). The reason is not clear yet, however, allylic substituent would work well to orientate $\mathrm{ClBu}_{2} \mathrm{SnN}$ - group causing cyclization. In the 2-oxazolidinones 12, 4,5-trans-disubstituted isomers predominated. The trans selectivity is explained in terms of 1, 3-allylic strain in the intramolecular addition (Scheme 10).

Next, we applied crotyltin reagents in the initial carboncarbon bond formation. Crotylmetalation of the carbonyl functionality incurs problems of regio- and diastereoselectivities. A chloro substituent on the tin center is easily introduced by the redistribution of crotyltributyltin (14) with $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ (Scheme 11) [24]. The redistribution pro-

Table 4
One-pot synthesis of 2-oxazolidinones (1 mmol of $\mathbf{1}, 1 \mathrm{mmol}$ of $\mathbf{1 1}, 1 \mathrm{mmol}$ of HMPA, 1 mmol of isocyanate, 1 mL of THF)

Entry	R^{1}	R^{2}	Sn (11)	Product and yield (\%)
1	$n-\mathrm{C}_{8} \mathrm{H}_{17}(\mathbf{1 a})$	Ph	$\mathrm{Bu}_{3} \mathrm{Sn}$ (11a)	No reaction
2			$\mathrm{Bu}_{2} \mathrm{ClSn}$ (11b)	13a 99 (without HMPA)
3			11b	12a 81 (trans:cis = 91:9)
4	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}(\mathbf{1 d})$	Ts	11b	12b 54 (trans:cis $=100: 0$)

ceeds by the initial formation of chlorodibutyl (1-methylallyl)tin \mathbf{K} through the reaction at the terminal γ-carbon of 14, and the subsequent isomerization takes place to give (Z)-crotyldibutylchlorotin \mathbf{L}. It has been reported that (Z)-isomers \mathbf{L} are formed irrespective of the starting E / Z crotyltin $\mathbf{1 4}$ [25]. Generated allylic tins \mathbf{K} and \mathbf{L} both work as nucleophiles to aldehydes, and here we controlled the reaction species by the order of the addition of $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$, determining α / γ regioselectivity of the products.

Initially, crotyltributyltin $\mathbf{1 4}, \mathrm{Bu}_{2} \mathrm{SnCl}_{2}, \mathrm{HMPA}$ and the enone 1 were heated in one-portion at $60^{\circ} \mathrm{C}$ for 3 h . The subsequent addition of $\mathrm{RN}=\mathrm{C}=\mathrm{O}$ at $0^{\circ} \mathrm{C}$ followed by heating gave 4,5-trans-substituted 2-oxazolidones 15a-c which include Z-crotyl and carbonylmethyl substituents on the rings (Scheme 12).

As shown in Scheme 13, it is considered that the Z-crotyl substituent in $\mathbf{1 5}$ is derived from the in situ generated chloro-dibutyl(1-methylallyl)tin \mathbf{K} which adds to the formyl group of $\mathbf{1}$ at the terminal γ-carbon. This regioselectivity is confirmed by quenching the mixture of the crotylation product of the carbonyl substrates, where Z-homocrotyl alcohols $\mathbf{1 6}$ were obtained. The stereoselectivity of the reactions between \mathbf{K} and $\mathbf{1}$ is consistent with a six-membered, chairlike, cyclic transition state in which α-methyl substituent adopts a pseudo-axial position. The (Z)-preference is thought to be due to the steric congestion between the α-methyl group and the tin ligands in the transition state [26].

On the contrary, when crotyltributyltin 14 and n $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ were preheated at $60^{\circ} \mathrm{C}$ for 2 h , the subsequent

Scheme 10.

Scheme 12.

Scheme 13.
reaction with 1 followed by the addition to an isocyanate afforded 4,5-trans-disubstituted-2-oxazolidones $\mathbf{1 7 a} \mathbf{- c}$ which include carbonylmethyl- and 1-methylallyl groups on the ring (Scheme 14).

The regioselectivity to introduce a 1-methylallyl group on the ring of $\mathbf{1 7}$ is derived from the initial reaction of the in situ generated (Z)-crotyldibutylchlorotin \mathbf{L} through preferential isomerization from \mathbf{K} by preheating at $60^{\circ} \mathrm{C}$
for 2 h . In addition, it is noted that high diastereoselectivity in the side chain, 1-methylallyl substituent, was obtained.

The same diastereoisomers of $\mathbf{1 7}$ predominated irrespective of the E / Z-stereochemistry of 14 . This diastereoselectivity is derived from the crotylation step. Thus, quenching the solution of crotylation of 1 gave the corresponding homoallylic alcohols $\mathbf{1 8}$ with high syn selectivities from both E - and Z-crotyltins 14 (Scheme 15). As

14 $+$
$\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$

(E)-2c
(1a) $R^{2}=T s$
17a 96% (ds = 82\%)
(E)-2c $\quad \mathrm{R}^{1}=n-\mathrm{C}_{8} \mathrm{H}_{17}$
(1a) $\mathrm{R}^{2}=n B u$
17b 96% ($d s=82 \%$)
(Z)-2c $\quad \mathrm{R}^{1}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}$
(1d)
$R^{2}=T s$
17c 62% (ds = 85\%)

Scheme 15.

Scheme 16.
described in Scheme 11, (Z)-crotyltin \mathbf{L} is formed by the redistribution of $\mathbf{1 4}$ with $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ irrespective of the $E /$ Z-stereochemistry of $\mathbf{1 4}$, reacting with the formyl group of 1 at the terminal γ-carbon. As shown in Scheme 16, the crotylation of the (Z)-isomer \mathbf{L} proceeds through a six-membered chair-like transition state, affording syn adducts predominantly [27].

3. Conclusion

In conclusion, various 2 -monosubstituted pyrroles could be prepared in a one-pot procedure by the imineselective reduction of in situ formed bifunctional substrates bearing imine and enone functionalities. One-pot synthesis of nitrogen heterocyclic compounds was initiated by chemoselective allylation of $\mathbf{1}$. Regio- and diastereoselective carbon-carbon bond formation was established in the side chain of the rings. One-pot synthesis of
a variety of heterocycles was established initiated by chemoselective reduction of enals $\mathbf{1}$.

4. Experimental

4.1. Instrumentation

4.1.1. General procedures

IR spectra were recorded on a Horiba FT-720 spectrometer. All the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of the products were recorded with a JEOL JNM-GSX-270 (270 and 67 MHz , respectively) in deuteriochloroform $\left(\mathrm{CDCl}_{3}\right)$ containing $0.03 \%(\mathrm{w} / \mathrm{v})$ of tetramethylsilane. Mass spectra were recorded on a JEOL JMS-DS-303. Column chromatography was performed by using Fuji Davison gel FL100DX. Preparative TLC was carried out on Wakogel B5 F silica gel. Yields were determined by ${ }^{1} \mathrm{H}$ NMR using internal standards.

4.2. Materials

Dibutyltin dihydride was prepared by dibutyltin dichloride $\left(\mathrm{Bu}_{2} \mathrm{SnCl}_{2}\right)$ with LiAlH_{4} [28]. Dibutyltin diiodide $\left(\mathrm{Bu}_{2} \mathrm{SnI}_{2}\right)$ was prepared according to described method [29]. Dibutyltin halide hydrides $\left(\mathrm{Bu}_{2} \mathrm{SnXH}\right)$ were synthesized in situ by the redistribution reaction between $\mathrm{Bu}_{2} \mathrm{SnH}_{2}$ and $\mathrm{Bu}_{2} \mathrm{SnX}_{2}(\mathrm{X}=\mathrm{Cl}$, I) [30]. Allyltributyltin (11a) was prepared by the reaction of tributyltin chloride $\left(\mathrm{Bu}_{3} \mathrm{SnCl}\right)$ with the corresponding allylic Grignard reagents [31]. Allyldibutylchlorotin was synthesized by the redistribution reaction between $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ and diallyldibutyltin (11b). THF was freshly distilled from sodium benzophenone ketyl. Crotyltributyltin (E)-14 [32] and $(Z)-14$ [33] were prepared by known methods. For the preparation of $(E) \mathbf{- 1 4}$, starting substrate, crotyl chloride, was used as sterically (E)-pure form which was provided by the reduction of commercially available (E)-crotylaldehyde with LiAlH_{4} and subsequent chlorination of the (E-crotyl alcohol with PCl_{3}. Substrates $\mathbf{1 a}$ and 1b were prepared according to reported methods starting from the alkylation of furan [34]. Substrates 1c, 1d were prepared by our original method via Wittig reaction as follows.

4.2.1. Synthesis of (E)-4-oxo-4-phenyl-but-2-enal (1c)

To a dry nitrogen-filled $300-\mathrm{mL}$ round-bottomed flask containing $\mathrm{Ph}_{3} \mathrm{P}(33.11 \mathrm{~g}, \quad 126.23 \mathrm{mmol})$ in CHCl_{3} $(150 \mathrm{~mL})$ was added 2-bromo-propiophenone $(25.1 \mathrm{~g}$, 126 mmol) at rt . After stirring at rt for $4 \mathrm{~h}, 500 \mathrm{~mL}$ of ether was added to form white precipitates. After separation, the resulting white precipitate was added to 1 L water containing $\mathrm{Na}_{2} \mathrm{CO}_{3}(101 \mathrm{~g})$, which was stirred at rt for 15 h . Ylide was obtained as a white solid which was filtered and dried. To a dry nitrogen-filled $300-\mathrm{mL}$ round-bottomed flask containing $40 \mathrm{wt} \%$ glyoxal (145 g , $1 \mathrm{~mol})$ in dichloromethane (100 mL) was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of the ylide $(38.0 \mathrm{~g}, 100 \mathrm{mmol})$ dropwise at rt for 1 h . The solution was stirred overnight at rt and poured into a mixture of ether and water with vigorous stirring. The resulting white solid $\left(\mathrm{Ph}_{3} \mathrm{PO}\right)$ was filtered off. Ether layer was separated, and the aqueous layer was extracted with ether. The combined ether solution was dried over MgSO_{4} and concentrated to give an oil. Purification was performed by column chromatography
on silica-gel column (FL100-DX (Fuji silysia)). Elution with hexane removed other unknown by-products and elution hexane/ $\mathrm{EtOAc}=7 / 3$ gave $1 \mathbf{c}$ as a pure form (see Scheme 17).
4.2.1.1. (E)-4-Oxo-4-phenyl-but-2-enal (1c). Colorless wax; IR 1697, $1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 6.99$ (dd, $J=7.32$ and $15.62 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-8.00(\mathrm{~m}, 5 \mathrm{H}), 7.72(\mathrm{~d}$, $J=15.62 \mathrm{~Hz}, 1 \mathrm{H}), 9.99(\mathrm{~d}, J=7.32 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 128.86,129.01,134.14,136.24,139.14,142.04$, 189.75, 192.74; HRMS calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2}$ 160.054; found 160.0528.

4.3. Typical experimental procedure to prepare pyrrole (2)

To a dry nitrogen-filled $10-\mathrm{mL}$ round-bottomed flask containing dibutyltin dihydride $\left(\mathrm{Bu}_{2} \mathrm{SnH}_{2}, 0.166 \mathrm{~g}\right.$, 0.5 mmol) in 1,4-dioxane (1 mL) was added dibutyltin diiodide $\left(\mathrm{Bu}_{2} \mathrm{SnI}_{2}, 0.243 \mathrm{~g}, 0.5 \mathrm{mmol}\right)$ and HMPA $(0.180 \mathrm{~g}$, $1 \mathrm{mmol})$ at rt . After stirring at rt for 10 min , the resulting solution of dibutyliodotin hydride $\left(\mathrm{Bu}_{2} \mathrm{SnIH}, 1 \mathrm{mmol}\right)$ was cooled to $0^{\circ} \mathrm{C}$. Carbonyl substrate $\mathbf{1 a}(0.196 \mathrm{~g}$, $1 \mathrm{mmol})$, and p-chloroaniline (0.128 g) were added successively, and stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 2 h . The IR absorption band of $\mathrm{Sn}-\mathrm{H}\left(1850 \mathrm{~cm}^{-1}\right)$ disappeared, which indicated the formation of stannylamide(II). The mixture was heated to $80^{\circ} \mathrm{C}$ and stirred for 2 h . The reaction was quenched by $\mathrm{MeOH}(0.5 \mathrm{~mL})$, and the residue was chromatographed on silica-gel column (FL100-DX (Fuji silysia)). Elution with hexane gave pyrrole 2a ($0.234 \mathrm{~g}, 81 \%$).

4.3.1. 1-(4-Chlorophenyl)-2-octyl-1H-pyrrole (2a)

Colorless wax; IR $1596,1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $0.86(\mathrm{t}, J=6.83 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.30(\mathrm{~m}, 10 \mathrm{H}), 1.44-1.55$ $(\mathrm{m}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=7.81 \mathrm{~Hz}, 2 \mathrm{H}), 6.04-6.06(\mathrm{~m}, 1 \mathrm{H})$, $6.21(\mathrm{t}, J=2.93 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.69(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}$, $J=8.79 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.79 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.08,22.63,26.65,29.13,29.27,29.30,31.57$, $31.80,107.10,108.26,121.30,127.30,129.18,132.77$, 134.21, 139.06; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NCl}$ 289.1597; found 289.1597.

4.3.2. 2-Octyl-1-phenyl-1H-pyrrole (2b)

Colorless wax; IR $1516 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.86$
(t, $J=6.83 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.30(\mathrm{~m}, 10 \mathrm{H}), 1.45-1.56(\mathrm{~m}$,

1c
Scheme 17.
$2 \mathrm{H}), 2.52(\mathrm{t}, J=7.81 \mathrm{~Hz}, 2 \mathrm{H}), 6.05-6.07(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{t}$, $J=2.93 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.73(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.45(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.03,22.60,26.67,29.11$ (d), 29.25, $29.30,31.79,106.69,107.84,121.34,126.09,126.89$, 128.93, 134.16, 140.50; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{~N}$ 255.1987; found 255.1993 .

4.3.3. 2-Octyl-1-p-tolyl-1 H-pyrrole (2c)

Colorless wax; IR $1520 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.86$ $(\mathrm{t}, J=6.83 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.30(\mathrm{~m}, 10 \mathrm{H}), 1.45-1.55(\mathrm{~m}$, $2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{t}, J=7.81 \mathrm{~Hz}, 2 \mathrm{H}), 6.03-6.05(\mathrm{~m}$, $1 \mathrm{H}), 6.19(\mathrm{t}, J=2.93 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.71(\mathrm{~m}, 1 \mathrm{H}), 7.15-$ $7.24(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 14.05,20.98,22.62$, $26.65,29.11,29.14,29.28,29.31,31.81,106.38,107.59$, 121.40, 125.97, 129.53, 134.28, 136.71, 137.97; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}$ 269.2144; found 269.2148 .

4.3.4. 1-(4-Methoxy-phenyl)-2-octyl-1 H-pyrrole (2d)

Colorless wax; IR $1500 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $0.86(\mathrm{t}, ~ J=6.83 \mathrm{~Hz}, 3 \mathrm{H}), 1.21-1.30(\mathrm{~m}, 10 \mathrm{H}), 1.44-1.54$ $(\mathrm{m}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=7.81 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 6.01-$ $6.03(\mathrm{~m}, 1 \mathrm{H}), 6.18(\mathrm{t}, J=2.93 \mathrm{~Hz}, 1 \mathrm{H}), 6.67-6.69(\mathrm{~m}$, $1 \mathrm{H}), 6.92-7.22(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 14.06, $22.63,26.59,29.14,29.30,29.34,29.68,31.82,55.45$, $106.11,107.42,114.07,121.57,127.42,133.51,134.54$, 158.53; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO} 285.2093$; found 285.2086.
4.3.5. 1-(4-Chloro-phenyl)-2-(3-phenyl-propyl)-1 H-pyrrole (2e)

Colorless wax; IR $1496 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.75-$ $1.87(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.59(\mathrm{~m}, 4 \mathrm{H}), 6.06-6.09(\mathrm{~m}, 1 \mathrm{H}), 6.18-$ $6.21(\mathrm{~m}, 1 \mathrm{H}), 6.66-6.68(\mathrm{~m}, 1 \mathrm{H}), 7.050-7.352(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 26.09,30.67,35.29,107.39,108.32$, 121.46, 125.71, 127.19, 128.25, 128.31, 129.20, 132.76, 133.49, 138.87, 141.86; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NCl}$ 295.1128; found 295.1125 .

4.3.6. 1-(4-Chloro-phenyl)-2-phenyl-1 H-pyrrole (2f)

Colorless wax; IR $1600,1492 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $6.35-6.38(\mathrm{~m}, 1 \mathrm{H}), 6.42-6.44(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.91(\mathrm{~m}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=8.40 \mathrm{~Hz}, 2 \mathrm{H}), 7.13-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.28(\mathrm{~d}$, $J=8.40 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 109.60,110.99$, $124.16,126.49,126.76,128.18,128.32,129.13,132.19$, 132.59, 133.79, 139.01; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{NCl}$ 253.0658; found 253.0653 .

4.4. Representative procedure for the preparation of 2-oxazolidinone initiated by chemoselective reduction

To a dry nitrogen-filled $10-\mathrm{mL}$ round-bottomed flask containing triibutyltin hydride $(0.291 \mathrm{~g}, 1 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added and HMPA $(0.180 \mathrm{~g}, 1 \mathrm{mmol})$ at rt . To the resulting solution was added carbonyl substrate (1a) $(0.196 \mathrm{~g}, 1 \mathrm{mmol})$, and stirred at $60^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$. To this mixture was added butyl isocyanate $(0.0975 \mathrm{~g}, \quad 0.8 \mathrm{mmol})$ and stirred for
0.5 h . The IR absorption band of NCO ($2200 \mathrm{~cm}^{-1}$) disappeared, which indicated the formation of stannylcarbamate adduct (II). The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction was quenched by $\mathrm{MeOH}(0.5 \mathrm{~mL})$, and the residue was chromatographed on silica-gel column (FL100-DX (Fuji silysia)). By-products such as organotin compounds were removed by eluting with hexane. Subsequent elution with EtOAc gave 2-oxazolidonone 5a ($0.199 \mathrm{~g}, 84 \%$ based on $\mathrm{BuN}=\mathrm{C}=\mathrm{O}$).

4.4.1. 3-Butyl-4-(2-oxo-decyl)-oxazolidin-2-one (5a)

Colorless wax; IR (neat) 2927, 1751, $1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 0.85-0.96(\mathrm{~m}, 6 \mathrm{H}$, $\left.2 \mathrm{CH}_{3}\right), 1.21-1.60\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 2.61(\mathrm{dd}, 1 \mathrm{H}, J=9.3$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 2.88-2.96\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one of $\left.\mathrm{NCH}_{2}\right), 3.01(\mathrm{dd}$, $1 \mathrm{H}, J=3.9$ and 18.1 Hz , one of $\mathrm{C}=\mathrm{OCH}_{2}$), 3.37-3.50 $\left(\mathrm{m}, 1 \mathrm{H}\right.$, one of $\left.\mathrm{NCH}_{2}\right), 3.84(\mathrm{dd}, 1 \mathrm{H}, J=5.9$ and 8.8 Hz , one of $\left.\mathrm{OCH}_{2}\right), 4.12-4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 4.52(\mathrm{dd}, 1 \mathrm{H}$, $J=8.3$ and 8.8 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR $(67.9 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 13.45,13.83,19.66,22.38,22.39,28.85$, 28.90 , 29.08, 29.19, 31.56, 41.61, 43.02, 45.22, 50.64 , 67.89, 157.73, 207.93; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{NO}_{3}$ 297.2304, found 297.2298.

4.4.2. 3-Allyl-4-(2-oxo-decyl)-oxazolidin-2-one (5b)

Colorless wax; IR (neat) 2927, 1751, $1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\quad\left(270 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}, \quad 25^{\circ} \mathrm{C}\right) \quad \delta \quad 0.88 \quad(\mathrm{t}, \quad 3 \mathrm{H}$, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.11-1.56\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.42(\mathrm{t}, 2 \mathrm{H}$, $\left.J=7.3 \mathrm{~Hz}, \quad \mathrm{C}=\mathrm{OCH}_{2}\right), \quad 2.58 \quad(\mathrm{dd}, \quad 1 \mathrm{H}, \quad J=9.8 \quad$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.01(\mathrm{dd}, 1 \mathrm{H}, J=3.9$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.63(\mathrm{dd}, \quad 1 \mathrm{H}, \quad J=6.8$ and 15.6 Hz , one of $\left.\mathrm{C}=\mathrm{CCH}_{2}\right), 3.87(\mathrm{dd}, 1 \mathrm{H}, J=6.3$ and 8.8 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.06(\mathrm{dd}, 1 \mathrm{H}, J=5.4$ and 15.6 Hz , one of $\left.\mathrm{C}=\mathrm{CCH}_{2}\right), 4.12-4.33(\mathrm{~m}, 1 \mathrm{H}$, one of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 4.57\left(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.08-5.29$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 5.68-5.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 13.78,22.30,23.25$, 28.77, 28.78, 28.99, 31.47, 42.79, 44.82, 45.10, 50.78, 67.96, 118.12, 132.04, 157.58, 207.79; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{3}$ 281.1991, found 281.1988.

4.4.3. 3-(2-Chloro-ethyl)-4-(2-oxo-decyl)-oxazolidin-2-one (5c)

Colorless wax; IR (neat) 2931, 1754, $1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\quad\left(270 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}, \quad 25^{\circ} \mathrm{C}\right) \quad \delta \quad 0.88 \quad(\mathrm{t}, \quad 3 \mathrm{H}$, $\left.J=6.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.22-1.58\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.47(\mathrm{t}, 2 \mathrm{H}$, $\left.J=7.3 \mathrm{~Hz}, \quad \mathrm{C}=\mathrm{OCH}_{2}\right), \quad 2.69 \quad(\mathrm{dd}, \quad 1 \mathrm{H}, \quad J=8.8 \quad$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.13(\mathrm{dd}, 1 \mathrm{H}, J=4.4$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.30-3.44(\mathrm{~m}, 1 \mathrm{H}$, one of $\left.\mathrm{CH}_{2} \mathrm{~N}\right), 3.64-3.76\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right.$ and one of $\left.\mathrm{CH}_{2} \mathrm{~N}\right)$, 3.91 (dd, $1 \mathrm{H}, J=6.3$ and 8.8 Hz , one of $\mathrm{CH}_{2} \mathrm{O}$), $4.26-$ $4.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 4.58(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) δ 13.91, $22.45,23.46,28.92,28.96,29.13,31.62,41.31,43.05$, 44.15, 45.59, 51.64, 68.31, 157.47, 207.91; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{ClNO}_{3}$ 303.1601, found 303.1609.
4.4.4. 3-Benzyl-4-(2-oxo-decyl)-oxazolidin-2-one (5d)

Colorless wax; IR (neat) 2927, 1758, $1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}, \quad 25^{\circ} \mathrm{C}\right) \quad \delta \quad 0.88 \quad(\mathrm{t}, \quad 3 \mathrm{H}$, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.08-1.48\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.24(\mathrm{t}, 2 \mathrm{H}$, $\left.J=8.3 \mathrm{~Hz}, \quad \mathrm{C}=\mathrm{OCH}_{2}\right), \quad 2.50 \quad(\mathrm{dd}, \quad 1 \mathrm{H}, \quad J=9.3 \quad$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 2.87(\mathrm{dd}, 1 \mathrm{H}, J=3.9$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.87(\mathrm{dd}, 1 \mathrm{H}, J=6.6$ and 8.6 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{O}\right), 3.97-4.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 4.21(\mathrm{~d}$, $1 \mathrm{H}, J=15.7 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.54(\mathrm{t}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.21\left(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{Ph}\right)$, $7.20-7.83(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right) \delta 13.99,22.53,23.41,28.94,29.18,29.29,31.67$, 42.97, 45.33, 46.49, 50.82, 68.16, 127.77, 127.92, 127.77, 128.78, 158.31, 207.84; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{3}$ 331.2147, found 331.2136 .
4.4.5. 3-Isopropyl-4-(2-oxo-decyl)-oxazolidin-2-one (5e)

Colorless wax; IR (neat) 2927, 1751, $1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}, \quad 25^{\circ} \mathrm{C}\right) \quad \delta \quad 0.81 \quad(\mathrm{t}, \quad 3 \mathrm{H}$, $\left.J=6.8 \mathrm{~Hz}, \quad \mathrm{CH}_{3}\right), \quad 1.03-1.29 \quad\left(\mathrm{~m}, \quad 18 \mathrm{H}, \quad \mathrm{CH}_{2} \quad\right.$ and $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.37\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{OCH}_{2}\right), 2.65(\mathrm{dd}$, $1 \mathrm{H}, J=10.3$ and 18.6 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 2.92(\mathrm{dd}$, $1 \mathrm{H}, J=3.4$ and 18.6 Hz , one of $\mathrm{C}=\mathrm{OCH}_{2}$), $3.71-3.85$ $\left(\mathrm{m}, 2 \mathrm{H}\right.$, one of $\mathrm{CH}_{2} \mathrm{O}$ and $\left.\mathrm{CHMe}_{2}\right), 4.10-4.19(\mathrm{~m}, 1 \mathrm{H}$, CHN), $4.41\left(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{CH}_{2} \mathrm{O}\right) ;{ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 13.99,19.19,21.32,22.52$, 23.51, 28.98, 29.01, 29.19, 31.67, 43.21, 45.85, 47.31, 50.32, 68.35, 157.29, 208.33; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{3}$ 283.2147, found 283.2136 .
4.4.6. 3-(4-Phenyl)-4-(2-oxo-decyl)-oxazolidin-2-one ($\mathbf{5 f}$)

Colorless wax; IR (neat) 2927, 1758, 1709, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 0.87(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.17-1.55\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.32(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), \quad 2.65(\mathrm{dd}, 1 \mathrm{H}, \quad J=9.8$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 2.97(\mathrm{dd}, 1 \mathrm{H}, J=2.9$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 4.01(\mathrm{dd}, 1 \mathrm{H}, J=5.4$ and 8.8 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.67\left(\mathrm{dd}, 1 \mathrm{H}, J=8.3\right.$ and 8.8 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, 4.75-4.85 (m, 1H, CHN), 7.14-7.41 (m, 5H, arom); ${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 13.81,22.34,23.26$, 28.80(d), 28.99, 31.50, 42.87, 44.68, 52.16, 67.67, 121.68, 125.22, 129.06, 136.05, 155.29, 208.13; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3} 317.1991$, found 317.1991.
4.4.7. 3-Butyl-4-(2-oxo-5-phenylpentyl)-oxazolidin-2-one (5 g)

Colorless wax; IR (neat) 2931, 1751, $1712 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\quad\left(270 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}, \quad 25^{\circ} \mathrm{C}\right) \quad \delta \quad 0.92 \quad(\mathrm{t}, \quad 3 \mathrm{H}$, $\left.J=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.24-1.38\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.41-1.54(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.91\left(\mathrm{tt}, 2 \mathrm{H}, J=7.3\right.$ and $\left.7.4 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}\right)$, $2.43\left(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 2.53(\mathrm{dd}, 1 \mathrm{H}$, $J=9.4$ and 18.8 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 2.61(\mathrm{t}, 2 \mathrm{H}$, $\left.J=7.4 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 2.88\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one of $\left.\mathrm{NCH}_{2}\right), 2.90$ (dd, $1 \mathrm{H}, J=3.9$ and 18.8 Hz , one of $\mathrm{C}=\mathrm{OCH}_{2}$), 3.37$3.45\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one of $\left.\mathrm{NCH}_{2}\right), 3.78(\mathrm{dd}, 1 \mathrm{H}, J=6.0$ and 8.9 Hz , one of $\left.\mathrm{OCH}_{2}\right), 4.06-4.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 4.48(\mathrm{t}$, $1 \mathrm{H}, J=8.9$ and 8.9 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{O}\right) ; 7.12-7.31(\mathrm{~m}, 5 \mathrm{H}$,
$\mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 13.50,19.62$, $24.60,29.14,34.70,41.56,42.02,45.21,50.52,67.87$, 125.76, 128.45, 128.58, 140.90, 157.75, 207.48; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} 303.1834$, found 303.1834.

4.4.8. 3-Butyl-4-(2-oxo-2-phenyl-ethyl)-oxazolidin-2-one (5h)

Colorless wax; IR (neat) 2958, 1747, $1678 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\quad\left(270 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}, \quad 25^{\circ} \mathrm{C}\right) \quad \delta \quad 0.93 \quad(\mathrm{t}, \quad 3 \mathrm{H}$, $\left.J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.26-1.61\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.96-3.06(\mathrm{~m}$, 1 H , one of $\left.\mathrm{NCH}_{2}\right), 3.14(\mathrm{dd}, 1 \mathrm{H}, J=9.3$ and 17.6 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.45-3.55\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one of $\left.\mathrm{NCH}_{2}\right), 3.55$ (dd, $1 \mathrm{H}, J=3.9$ and 17.6 Hz , one of $\mathrm{C}=\mathrm{OCH}_{2}$), 3.95 (dd, $1 \mathrm{H}, J=5.9$ and 8.8 Hz , one of OCH_{2}), 4.32-4.43 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{CHN}), 4.63\left(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}\right.$, one of $\left.\mathrm{OCH}_{2}\right)$, 7.49-7.94 (m, 5H, Ph); ${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right) \delta 13.64,19.80,29.34,41.51,41.81,51.22,68.23$, 127.91, 128.81, 133.93, 137.22, 157.95, 196.93; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3} 261.1365$, found 261.1368.

4.4.9. 3-Butyl-4-[2-(4-chloro-phenyl)-2-oxo-ethyl]-

 oxazolidin-2-one (5i)Colorless wax; IR (neat) 2958, 1747, $1681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\quad\left(270 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}, \quad 25^{\circ} \mathrm{C}\right) \quad \delta \quad 0.94 \quad(\mathrm{t}, \quad 3 \mathrm{H}$, $J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}$), $1.22-1.61\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.94-3.05$ $\left(\mathrm{m}, 1 \mathrm{H}\right.$, one of $\left.\mathrm{NCH}_{2}\right), 3.13(\mathrm{dd}, 1 \mathrm{H}, J=9.3$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.46-3.57(\mathrm{~m}, 1 \mathrm{H}$, one of $\left.\mathrm{NCH}_{2}\right), 3.52(\mathrm{dd}, 1 \mathrm{H}, J=3.4$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.95(\mathrm{dd}, 1 \mathrm{H}, J=5.4$ and 8.8 Hz , one of $\left.\mathrm{OCH}_{2}\right), 4.33-4.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 4.63(\mathrm{t}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}$, one of OCH_{2}), $7.47(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, arom), $7.90(\mathrm{~d}$, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, arom); ${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right) \delta 13.63,19.81,29.34,41.47,41.81,51.13,68.14$, 129.17, 129.33, 134.21, 140.47, 157.89, 195.74; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClNO}_{3}$ 295.0975, found 295.0976.

4.4.10. 1-(3-Phenyl-2-thioxo-oxazolidin-4-yl)-decan-2-one (7)

Mp $80^{\circ} \mathrm{C}$; IR (neat) 2927, 1743, $1700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 0.87(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.16-1.53\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.20-2.40(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 2.71(\mathrm{dd}, 1 \mathrm{H}, J=9.8$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 2.85(\mathrm{dd}, 1 \mathrm{H}, \quad J=3.4$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 4.24(\mathrm{dd}, 1 \mathrm{H}, J=6.8$ and 9.3 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.73-4.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHN}), 5.01(\mathrm{t}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{O}\right), 7.14-7.55\left(\mathrm{~m}, 5 \mathrm{H}\right.$, arom); ${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 14.05,22.56,23.41,28.99(\mathrm{~d})$, $29.19,31.71,43.00,45.51,58.56,72.91,121.91,128.54$, 129.62, 136.85, 187.70, 207.51; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{s} \mathrm{~S}$ 333.1762, found 333.1755. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{s} \mathrm{~S}: \mathrm{C}, 68.43 ; \mathrm{H}, 8.16 ; \mathrm{N}, 4.20$. Found: C, 68.20; H, 7.96; N, 4.14.

4.4.11. 4-(2-Oxo-decyl)-3,3-diphenyl-dihydro-furan-2-one (8)

Bp $190^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$; IR (neat) 2923, $1778,1712 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 0.87(\mathrm{t}, 3 \mathrm{H}$,
$\left.J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.16-1.52\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.04(\mathrm{dd}, 1 \mathrm{H}$, $J=10.4$ and 18.3 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 2.24(\mathrm{t}, 2 \mathrm{H}$, $\left.J=7.4 \mathrm{~Hz}, \mathrm{C}=\mathrm{OCH}_{2}\right), 2.48(\mathrm{dd}, 1 \mathrm{H}, J=3.5$ and 18.3 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.84-3.92\left(\mathrm{~m}, 2 \mathrm{H}\right.$, one of $\mathrm{CH}_{2} \mathrm{O}$ and CHN), $4.66\left(\mathrm{dd}, 1 \mathrm{H}, J=5.9\right.$ and 8.4 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{O}\right)$, 7.05-7.50 (m, 10H, Ph); ${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right) \delta 14.07,22.60,23.53,29.03,29.11,29.24,31.78$, 38.44, 42.58, 43.14, 58.59, 69.83, 127.42, 127.90, 128.10, $128.45,128.56,128.62,138.72,139.18,177.11,208.63$; HRMS calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{O}_{3}$ 392.2351, found 392.2356.

4.4.12. 4-(2-Oxo-decyl)-2-phenyl-dihydrofuran-3,3dicarbonitrile (9)

(Major isomer) colorless wax; IR (neat) 2923, $1708 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 0.88(\mathrm{t}, 3 \mathrm{H}$, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.18-1.62\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.45-2.53(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C}=\mathrm{OCH}_{2}\right), 2.87(\mathrm{dd}, 1 \mathrm{H}, J=9.3$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.15(\mathrm{dd}, 1 \mathrm{H}, J=3.5$ and 18.1 Hz , one of $\mathrm{C}=\mathrm{OCH}_{2}$), $3.39-3.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCH}), 3.85(\mathrm{dd}, 1 \mathrm{H}, J=8.3$ and 9.3 Hz , one of $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.54(\mathrm{t}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{O}\right), 5.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 7.38-7.54(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}) ;{ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 14.00,22.53,23.57$, 29.01 (d), 29.19, 31.68, 42.67, 43.13, 45.29, 46.91, 71.68, 86.55, 113.21, 126.06, 128.72, 129.98, 132.79, 206.95; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2} 352.2151$, found 352.2145 .

4.4.13. 3-Acetyl-4-(2-oxo-decyl)-dihydro-furan-2-one (10)

Colorless wax; IR (neat) 1774, 1716, $1643 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.18-1.60\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{OCH}_{3}\right)$, 2.34-2.79 (m, 4H, C= OCH_{2}), 3.26-3.40 ($\mathrm{m}, 1 \mathrm{H}$, ring $\mathrm{CH}), 3.48(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}, \mathrm{CHAc}), 3.91(\mathrm{t}, 1 \mathrm{H}$, $J=8.5 \mathrm{~Hz}$, one of $\left.\mathrm{CH}_{2} \mathrm{O}\right), 4.61(\mathrm{t}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}$, one of $\mathrm{CH}_{2} \mathrm{O}$); ${ }^{13} \mathrm{C}$ NMR ($67.9 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) δ 13.91, $22.47,23.51,28.93,28.98,29.14,29.48,31.62,32.77$, 42.73, 44.32, 58.08. 71.59, 171.89, 200.05, 208.51; HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{4}$ 282.1831, found 282.1823.

4.5. Representative procedure for the preparation of 2-oxazolidinone initiated by allylation

To a dry nitrogen-filled $10-\mathrm{mL}$ round-bottomed flask containing diallyldibutyltin $(0.166 \mathrm{~g}, 0.5 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added dibutyltin dichloride ($0.151 \mathrm{~g}, 0.5 \mathrm{mmol}$) and HMPA $(0.180 \mathrm{~g}, 1 \mathrm{mmol})$ at rt . After stirring at rt for 10 min , to the resulting solution of allyldibutylchlorotin (11b) (1 mmol) was added carbonyl substrate (1a) $(0.196 \mathrm{~g}, 1 \mathrm{mmol})$, and stirred at rt for 20 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$. To this mixture was added phenyl isocyanate ($0.119 \mathrm{~g}, 1 \mathrm{mmol}$) and stirred for 1 h . The IR absorption band of $\mathrm{NCO}\left(2200 \mathrm{~cm}^{-1}\right)$ disappeared, which indicated the formation of stannylcarbamate adduct J. The mixture was heated to $60^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction was quenched by $\mathrm{MeOH}(0.5 \mathrm{~mL})$, and the residue was chromatographed on silica-gel column (FL100-DX (Fuji silysia)). By-products such as organotin compounds were removed by eluting with hexane. Subsequent elution
with EtOAc gave 2-oxazolidonone ($\mathbf{1 2 a}$) ($0.273 \mathrm{~g}, 81 \%$). The stereochemistry of the major diastereoisomer of 12a was determined by NOE. As for product 12b, the structure was indicated by X-ray analysis.

4.5.1. 5-Allyl-4-(2-oxo-decyl)-3-phenyl-oxazolidin-2-one (12a)

Bp $135^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$; IR (neat) 2927, 1758, 1712, $759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{t}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.28-1.57\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 2.34(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}$, $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 2.55-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}=\mathrm{C}\right), 2.73(\mathrm{dd}, 1 \mathrm{H}$, $J=9.8$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 2.92(\mathrm{dd}, 1 \mathrm{H}$, $J=3.0$ and 18.1 Hz , one of $\mathrm{C}=\mathrm{OCH}_{2}$), 4.30 (ddd, $J=3.0,3.2$ and $9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO}$), 4.55 (ddd, 1 H , $J=3.0,3.2$ and $9.8 \mathrm{~Hz}, \mathrm{CHN}), 5.20-5.33(\mathrm{~m}, 2 \mathrm{H}$, allyl $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.81-5.96(\mathrm{~m}, 1 \mathrm{H}$, allyl $\mathrm{CH}=\mathrm{C}), 7.15-7.46(\mathrm{~m}$, 5 H , arom); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.07,22.61,23.48$, 29.04(d), 29.25, 31.74, 38.77, 43.39, 44.70, 56.16, 78.51, $119.87,121.40,125.28,129.36,131.09,136.22,154.62$, 208.57; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{3} 357.2304$, found 357.2309 (see Scheme 18).

4.5.2. 5-Allyl-4-[2-(4-chloro-phenyl)-2-oxo-ethyl]-3(toluene-4-sulfonyl)-oxazolidin-2-one (12b)

$\mathrm{Mp} 183{ }^{\circ} \mathrm{C}$; IR (neat) $3070,1778,1677,1168,663 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.44-2.51(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{C}=\mathrm{CCH}_{2}\right), 3.47(\mathrm{dd}, 1 \mathrm{H}, J=10.3$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.96(\mathrm{dd}, 1 \mathrm{H}, J=2.4$ and 18.1 Hz , one of $\mathrm{C}=\mathrm{OCH}_{2}$), $4.34(\mathrm{td}, 1 \mathrm{H}, J=2.4$ and $4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHO})$, $4.57(\mathrm{td}, 1 \mathrm{H}, J=2.4$ and $10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHN}), 4.92-5.16$ ($\mathrm{m}, 2 \mathrm{H}$, allyl $\mathrm{C}=\mathrm{CH}_{2}$), $5.45-5.60(\mathrm{~m}, 1 \mathrm{H}$, allyl $\mathrm{CH}=\mathrm{C})$, 7.38 (d, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, arom), 7.49 (d, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, arom), 7.89 (d, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, arom), $7.94(\mathrm{~d}, 2 \mathrm{H}$, $J=8.3 \mathrm{~Hz}$, arom); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.74,38.25$, 43.72, $57.09,79.72,120.76,123.37,129.26,129.44$, $129.65,129.81,134.01,134.57,140.67,145.86,151.36$, 195.77; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClNO}_{5} \mathrm{~S} 433.0751$, found (CI) 434.0834. Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{ClNO}_{5} \mathrm{~S}: \mathrm{C}, 58.13$; H, 4.65; N, 3.23. Found: C, 58.16; H, 4.68; N, 3.22.

4.6. Representative procedure for the preparation of 2-oxazolidinone ($\mathbf{1 5 c}$) initiated by crotylation

To a dry nitrogen-filled 10 mL round-bottomed flask containing crotyltributyltin (Z) $\mathbf{- 1 4}(0.345 \mathrm{~g}, 1 \mathrm{mmol})$, car-

Scheme 18.
bonyl substrate ($\mathbf{1 b}$) $(0.195 \mathrm{~g}, 1 \mathrm{mmol})$ in THF (1 mL) were added dibutyltin dichloride $\left(\mathrm{Bu}_{2} \mathrm{SnCl}_{2}\right)(0.303 \mathrm{~g}, 1 \mathrm{mmol})$ and HMPA $(0.180 \mathrm{~g}, 1 \mathrm{mmol})$ at rt . After stirring at $60^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was cooled to $0^{\circ} \mathrm{C}$. To this mixture was added tosyl isocyanate $(0.197 \mathrm{~g}$, 1 mmol) and stirred for 1 h . IR absorption band of NCO ($2200 \mathrm{~cm}^{-1}$) had disappeared, which indicated the formation of stannylcarbamate adduct. The mixture was warmed to $60^{\circ} \mathrm{C}$ and stirred for 0.5 h . The reaction was quenched by $\mathrm{MeOH}(0.5 \mathrm{~mL})$, and the residue was chromatographed on silica-gel column (FL100-DX (Fuji silysia)). By-products such as organotin compounds were removed by eluting with hexane. Subsequent elusion with EtOAc gave 5-(Z)-crotyl substituted 2-oxazolidonone $15 \mathrm{c} \quad(0.312 \mathrm{~g}$, 70%). Further purification of $\mathbf{1 5 c}$ was performed by recrystallization. The structure of crystalline product $\mathbf{1 5 c}$ was indicated by X-ray analysis. Conjugate addition using other substrates were performed in a similar manner. Spectral data of products obtained are listed from the following pages.
4.6.1. 5-But-2-enyl-4-(2-oxo-decyl)-3-(toluene-4-sulfonyl)-oxazolidin-2-one (15a)

Bp $150{ }^{\circ} \mathrm{C} / 0.1 \mathrm{mmHg}$; IR (neat) 2927, 1785, 1712, 1173 , $759 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 1.23-2.53\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}\right), 1.56(\mathrm{~d}, 1 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}\right.$, arom- $\left.\mathrm{CH}_{3}\right), 2.35-2.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2}\right.$ and $\left.\mathrm{C}=\mathrm{OCH}_{2} \mathrm{C}_{7}\right), 2.93(\mathrm{dd}, 1 \mathrm{H}, J=10.4$ and 18.3 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.41(\mathrm{dd}, 1 \mathrm{H}, J=3.0$ and 18.3 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 4.22(\mathrm{td}, 1 \mathrm{H}, J=4.9$ and $3.0 \mathrm{~Hz}, \mathrm{CHO}), 4.34$ (td, $1 \mathrm{H}, J=3.0$ and $10.4 \mathrm{~Hz}, \mathrm{CHN}), 5.06-5.16(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C}=\mathrm{CH}), \quad 5.34-5.46 \quad(\mathrm{~m}, \quad 1 \mathrm{H}, \quad \mathrm{CH}=\mathrm{C}), 7.36 \quad(\mathrm{~d}, \quad 2 \mathrm{H}$, $J=8.3 \mathrm{~Hz}$, arom), $7.91\left(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}\right.$, arom); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.99,14.07,21.67,22.60,23.48,29.05$, $29.05,29.27,31.16,31.75,43.04,47.35,56.76,80.32$, $120.89,128.30,129.72,129.79,134.65,145.69,151.41$, 208.32; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{~S}$ 449.2236, found 449.2240. Anal. Calc. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{~S}: \mathrm{C}, 64.11 ; \mathrm{H}, 7.85$; N, 3.12. Found: C, 64.31; H, 7.7, N, 3.02.
4.6.2. 5-But-2-enyl-3-butyl-4-(2-oxo-decyl)-oxazolidin-2one (15b)

Colorless wax; IR (neat) 2958, 1751, 1712, $1427 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.88\left(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.93$ $\left(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.23-1.58\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 1.67$ (d, $3 \mathrm{H}, \quad J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}$), $2.43(\mathrm{t}, \quad 2 \mathrm{H}, \quad J=7.3 \mathrm{~Hz}$, $\left.\mathrm{C}_{7} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.49-2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CCH}_{2}\right), 2.60(\mathrm{dd}, 1 \mathrm{H}$, $J=8.8$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 2.79-2.87(\mathrm{~m}$, 1 H , one of NCH_{2}), $2.87(\mathrm{dd}, 1 \mathrm{H}, J=5.0$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.40-3.55\left(\mathrm{~m}, 1 \mathrm{H}\right.$, one of $\left.\mathrm{NCH}_{2}\right), 3.86$ (ddd, $1 \mathrm{H}, J=5.0,5.6$ and $8.8 \mathrm{~Hz}, \mathrm{CHN}$), 4.10 (td, $J=3.4$ and $5.6 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{CHO}), 5.38-5.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH})$, 5.62-5.75 (m, 1H, CH=C); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.11$, $13.70,14.08,19.88,22.62,23.58,29.08,29.11,29.30$, $29.39,31.71,31.77,41.60,43.55,45.36,54.58,79.17$, 122.80, 128.49, 157.18, 208.32; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{NO}_{3} 351.2773$, found 351.2764.
4.6.3. 5-But-2-enyl-4-[2-(4-chloro-phenyl)-2-oxo-ethyl]-3-(toluene-4-sulfonyl)-oxazolidin-2-one (15c)

Mp $160^{\circ} \mathrm{C}$; IR (neat) $3023,1774,1673,1168,810 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.57\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{CCH}_{3}\right)$, $2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.47-2.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.47(\mathrm{dd}, 1 \mathrm{H}$, $J=10.7$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.97(\mathrm{dd}, 1 \mathrm{H}$, $J=3.0$ and 18.1 Hz , one of $\mathrm{C}=\mathrm{OCH}_{2}$), $4.34(\mathrm{td}, 1 \mathrm{H}$, $J=3.0$ and $7.8 \mathrm{~Hz}, \mathrm{CHO}), 4.53(\mathrm{td}, 1 \mathrm{H}, J=3.0$ and $10.7 \mathrm{~Hz}, \mathrm{CHN}), 5.07-5.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}), 5.32-5.44(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, arom), $7.48(\mathrm{~d}, 2 \mathrm{H}$, $J=8.3 \mathrm{~Hz}$, arom $), 7.90(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, arom), $7.93(\mathrm{~d}$, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, arom); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.01,21.72$, 31.24, 43.87, 57.21, 80.30, 120.82, 128.33, 129.21, 129.44, $129.75,129.91,134.04,134.62,140.60,145.79,151.38$, 195.82; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClNO}_{5} \mathrm{~S} 447.0907$, found (CI) 448.0985; Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClNO}_{5} \mathrm{~S}: \mathrm{C}, 58.99$; H, 4.95; N, 3.13. Found: C, 58.79; H, 4.92; N, 3.19.

4.7. Representative procedure for the preparation of 2-oxazolidinone (17c) initiated by 1-methylallylation

To a dry nitrogen-filled $10-\mathrm{mL}$ round-bottomed flask containing crotylbutyltin $(Z)-\mathbf{1 2 c}(0.345 \mathrm{~g}, 1 \mathrm{mmol})$ in THF (1 mL) was added dibutyltin dichloride $\left(\mathrm{Bu}_{2} \mathrm{SnCl}_{2}\right)$ $(0.303 \mathrm{~g}, 1 \mathrm{mmol})$ at rt . After stirring at $60^{\circ} \mathrm{C}$ for 2 h , the reaction mixture was cooled to $\mathrm{rt}\left(35^{\circ} \mathrm{C}\right)$ and carbonyl substrate (1b) $(0.195 \mathrm{~g}, 1 \mathrm{mmol})$ and HMPA ($0.180 \mathrm{~g}, 1 \mathrm{mmol}$) were added. To this mixture was added tosyl isocyanate $(0.197 \mathrm{~g}, 1 \mathrm{mmol})$. The IR absorption band of NCO ($2200 \mathrm{~cm}^{-1}$) disappeared, which indicated the formation of stannylcarbamate adduct. The mixture was warmed to $60^{\circ} \mathrm{C}$ and stirring was continued for 1 h . The reaction was quenched by MeOH , and the residue was chromatographed on silica-gel column (FL100-DX (Fuji silysia)). Removal of by-products such as organotin compounds was performed by eluting with hexane. Subsequent elution with EtOAc gave 2-oxazolidonone $\mathbf{1 7 c}(0.277 \mathrm{~g}, 62 \%)$. Diastereomer ratio was determined by ${ }^{1} \mathrm{H}$ NMR. Further purification of the main diastereo isomer of $\mathbf{1 7} \mathbf{c}$ was performed by recrystallization. The structure of the crystalline product was indicated by Xray analysis. Conjugate 1-methylallylation using other substrates was performed in a similar manner. Spectral data of products obtained are listed in the following pages.

4.7.1. 5-(1-Methyl-allyl)-4-(2-oxo-decyl)-3-(toluene-4-

 sulfonyl)-oxazolidin-2-one (17a)$\mathrm{Mp} 160^{\circ} \mathrm{C}$; IR (neat) $2927,1786,1712,1172,667 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ major isomer $\delta 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 0.94\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.24-1.61(\mathrm{~m}, 12 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.33-2.51(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHMe}$ and $\left.\mathrm{C}_{7} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 2.95(\mathrm{dd}, 1 \mathrm{H}, J=8.9$ and 17.8 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.28(\mathrm{dd}, 1 \mathrm{H}, J=3.0$ and 17.8 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 4.07(\mathrm{dd}, 1 \mathrm{H}, J=3.0$ and $5.5 \mathrm{~Hz}, \mathrm{CHO}), 4.45$ $(\mathrm{td}, 1 \mathrm{H}, J=3.0$ and $8.9 \mathrm{~Hz}, \mathrm{CHN}), 4.92-5.06(\mathrm{~m}, 2 \mathrm{H}$, allyl $\left.\mathrm{C}=\mathrm{CH}_{2}\right), 5.54(\mathrm{ddd}, 1 \mathrm{H}, J=7.8,10.4$, and 16.8 Hz , allyl $\mathrm{C}=\mathrm{CH}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, arom), $7.90(\mathrm{~d}, 2 \mathrm{H}$, $J=8.3 \mathrm{~Hz}$, arom); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.02,14.05$,
21.68, 22.60, 23.40, 29.03, 29.04, 29.27, 31.75, 41.91, 43.17, $46.89,55.24,83.05,117.71,128.27,129.62,134.69,136.67$, 145.72, 151.39, 207.70; HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{~S}$ 449.2236, found 449.0985 .

4.7.2. 3-Butyl-5-(1-methyl-allyl)-4-(2-oxo-decyl)-oxazolidin-2-one (17b)

Colorless wax; IR (neat) 2927, 1780, 1712, 1172, $732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ major isomer $\delta 0.88(\mathrm{t}, 3 \mathrm{H}$, $\left.J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.93\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.10(\mathrm{~d}$, $\left.3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.24-1.65\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 2.43(\mathrm{t}$, $\left.2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{C}=\mathrm{OCH}_{2} \mathrm{C}_{7}\right), 2.41-2.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHMe})$, $2.59\left(\mathrm{dd}, 1 \mathrm{H}, J=7.3\right.$ and 18.1 Hz , one of $\mathrm{C}=\mathrm{OCH}_{2}$), 2.76-2.83 (m, 1H, one of $\left.\mathrm{NCH}_{2}\right), 2.81(\mathrm{dd}, 1 \mathrm{H}, J=4.9$ and 18.1 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.41-3.51(\mathrm{~m}, 1 \mathrm{H}$, one of $\left.\mathrm{NCH}_{2}\right), 3.90-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.96-4.02(\mathrm{~m}, 1 \mathrm{H}), 5.07-5.23$ ($\mathrm{m}, 2 \mathrm{H}$, allyl $\mathrm{C}=\mathrm{CH}_{2}$), 5.67-5.80 (m, 1 H , allyl $\mathrm{CH}=\mathrm{C}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.68,14.06,14.60,19.90,22.60$, 23.61, 29.07(d), 29.28, 29.37, 31.76, 41.73, 42.15, 43.61, 45.75, 53.04, 82.10, 116.96, 137.91, 157.21, 207.95; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{NO}_{3} 351.2773$, found 351.2772.

4.7.3. 4-[2-(4-Chloro-phenyl)-2-oxo-ethyl]-5-(1-methyl-

 allyl)-3-(toluene-4-sulfonyl)-oxazolidin-2-one (17c)Mp $139{ }^{\circ} \mathrm{C}$; IR (neat) $2977,1774,1681,1365,667 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ major isomer $\delta 0.96(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}$, CH_{3}), 2.35-2.42 (m, 1H, CHMe), $2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.48$ $\left(\mathrm{dd}, 1 \mathrm{H}, J=9.8\right.$ and 17.6 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 3.83$ $\left(\mathrm{dd}, 1 \mathrm{H}, J=3.0\right.$ and 17.6 Hz , one of $\left.\mathrm{C}=\mathrm{OCH}_{2}\right), 4.18$ (dd, $1 \mathrm{H}, J=2.4$ and $5.9 \mathrm{~Hz}, \mathrm{CHO}), 4.61(\mathrm{td}, 1 \mathrm{H}, J=3.0$ and $9.8 \mathrm{~Hz}, \mathrm{CHN}$), $4.90-5.06\left(\mathrm{~m}, 2 \mathrm{H}\right.$, arom $\left.\mathrm{C}=\mathrm{CH}_{2}\right)$, $5.51-5.64(\mathrm{~m}, 1 \mathrm{H}$, arom $\mathrm{CH}=\mathrm{C}), 7.35(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, arom), 7.48 (d, $2 \mathrm{H}, J=8.3 \mathrm{~Hz}$, arom), 7.89 (d, 2 H , $J=8.3 \mathrm{~Hz}$, arom $), 7.93(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}, \operatorname{arom}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 13.85,21.54,41.80,42.99,55.52,82.70$, $117.63,128.05,128.95,129.35,129.65,134.04,134.54$, $136.50,140.18,145.64,151.29,195.17$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClNO}_{5} \mathrm{~S} 447.0907$, found (CI) 448.0988; Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{ClNO}_{5} \mathrm{~S}: \mathrm{C}, 58.99 ; \mathrm{H}, 4.95$; N, 3.13. Found: C, 58.78; H, 4.89; N, 3.11.

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research on Priority Areas (No. 14078101, "Reaction Control of Dynamic Complexes") from Ministry of Education, Culture, Sports, Science and Technology, Japan, and The Sumitomo Foundation (050932).

References

[1] (a) A.K. Sawer, in: Organotin Compounds, Marcel Dekker, New York, 1971;
(b) E. Negishi, Organometallics in Organic Synthesis, vol. 1, Willey, New York, 1980, p. 394;
(c) A.G. Davies, in: Organotin Chemistry, VCH, Weinhelm, 1997;
(d) I. Omae, in: Organotin ChemistryJournal of Organometallic Chemistry Library, vol. 21, Elesevier, NY, 1989;
(e) M. Pereyre, P.J. Quintard, A. Rahm, in: Tin in Organic Synthesis, Butterworth, London, 1987.
[2] I. Shibata, A. Baba, Curr. Org. Chem. 6 (2002) 665
[3] E.W. Abel, D.A. Armitage, D.B. Brady, Trans. Faraday Soc. 62 (1966) 3459.
[4] I. Shibata, T. Moriuchi-Kawakami, D. Tanizawa, T. Suwa E. Sugiyama, H. Matsuda, A. Baba, J. Org. Chem. 63 (1998) 383.
[5] T. Suwa, E. Sugiyama, I. Shibata, A. Baba, Synlett (2000) 556.
[6] For example, see: C.-F. Lee, L.-M. Yang, T.-Y. Hwu, A.-S. Feng J.-C. Tseng, T.-Y. Luh, J. Am. Chem. Soc. 122 (2000) 4992, and references therein.
[7] For a review see: (a) A. GossauerPyrrole, vol. E6a/1, Houben-Weyl; Thieme, Stuttgart, 1994, p. 556;
(b) D.L. Boger, C.W. Boyce, M.A. Labroli, C.A. Sehon, Q. Jin, J. Am. Chem. Soc. 121 (1999) 54;
(c) A. Furstner, H. Weintritt, J. Am. Chem. Soc. 120 (1998) 2817;
(d) B. Sayah, N. Pelloux-Leon, Y. Vallee, J. Org. Chem. 65 (2000) 2824;
(e) J.-H. Liu, Q.-C. Yang, T.C.W. Mak, H.N.C. Wong, J. Org. Chem. 65 (2000) 3587.
[8] For formation of the 2-monosubstituted pyrrole ring: (a) Ref. [7a]; (b) See also: R.A. Gadzhily, V.M. Fedoseev, V.G. Dzhafarov, Chem. Heterocycl. Compd. 26 (1990) 874;
(c) N. Engel, W. Steglich, Angew. Chem., Int. Ed. Engl. 17 (1978) 676;
(d) D.O.A. Garrido, G. Buldain, B. Frydman, J. Org. Chem. 49 (1984) 2619;
(e) J.M. Muchowski, D.R. Solas, J. Org. Chem. 49 (1984) 203;
(f) A.V. Kel'in, A.W. Sromek, V. Gevorgyan, J. Am. Chem. Soc. 123 (2001) 2074
[9] I. Shibata, H. Kato, N. Kanazawa, M. Yasuda, A. Baba, Synlett (2004) 137.
[10] T. Kawakami, I. Shibata, A. Baba, J. Org. Chem. 61 (1996) 82.
[11] (a) I. Shibata, A. Baba, H. Iwasaki, H. Matsuda, J. Org. Chem. 51 (1986) 2177;
(b) A. Baba, H. Kishiki, I. Shibata, H. Matsuda, Organometallics 4 (1984) 1329;
(c) I. Shibata, A. Baba, H. Matsuda, J. Chem. Soc., Chem. Commun. (1986) 1703;
(d) I. Shibata, K. Nakamura, A. Baba, H. Matsuda, Bull. Chem. Soc. Jpn. 62 (1989) 853;
(e) I. Shibata, H. Yamasaki, A. Baba, H. Matsuda, J. Org. Chem. 57 (1992) 6909
[12] H. Kato, I. Shibata, N. Kanazawa, M. Yasuda, A. Baba, Eur. J. Org. Chem. (2006) 1117.
[13] (a) W.P. Neumann, E. Heymann, Justus Liebigs Ann. Chem. (1965) 11;
(b) B.-Z. Zheng, M. Yamaguchi, H. Dei, S. Kusaka, K. Matsui O. Yonemitsu, Tetrahedron Lett. 41 (2000) 6441.
[14] I. Shibata, T. Yoshida, A. Baba, H. Matsuda, Chem. Lett. (1989) 619-622.
[15] T. Kawakami, T. Sugimoto, I. Shibata, A. Baba, H. Matsuda N. Sonoda, J. Org. Chem. 60 (1995) 2677.
[16] (a) A.J. Bloodworth, A.G. Davies, J. Chem. Soc. (1965) 5238;
(b) A.J. Bloodworth, A.G. Davies, S.C. Vasishtha, J. Chem. Soc. C (1967) 1309;
(c) P.G. Harrison, J.J. Zuckerman, Inorg. Chem. 9 (1970) 175;
(d) S. Sakai, Y. Kiyohara, K. Itoh, Y. Ishii, J. Org. Chem. 35 (1970) 2347;
(e) D.P. Agur, G. Srivastava, R.C. Mehrotra, Ind. J. Chem. 12 (1974) 1193-1196;
(f) A.G. Davies, P.G. Harrison, J. Chem. Soc. C. (1967) 1313;
(g) P.G. Harrison, J.J. Zuckerman, J. Chem. Soc. D (1969) 321a.
[17] (a) M.E. Dyen, D. Swern, Chem. Rev. 67 (1967) 197;
(b) S. Ozaki, Chem. Rev. 72 (1972) 457;
(c) G. Cardillo, M. Orena, S. Sandri, C. Tomashini, Tetrahedron 43 (1987) 2505;
(d) A.V.R. Rao, T.G.M. Dhar, T.K. Chakraborty, M.K. Gurjar, Tetrahedron Lett. 29 (1988) 2069.
[18] I. Shibata, A. Baba, H. Matsuda, Bull. Chem. Soc. Jpn. 59 (1986) 4000.
[19] (a) I. Shibata, M. Nishio, A. Baba, H. Matsuda, Chem. Lett. (1993) 1219;
(b) I. Shibata, M. Nishio, A. Baba, H. Matsuda, Chem. Commun. (1993) 1067.
[20] I. Shibata, H. Kato, N. Kanazawa, M. Yasuda, A. Baba, J. Am. Chem. Soc. 126 (2004) 466.
[21] (a) Y. Yamamoto, N. Asao, Chem. Rev. 93 (1993) 2207;
(b) W.R. Roush, in: B.M. Trost, I. Fleming (Eds.), Comprehensive Organic Synthesis, vol. 2, Pergamon Press, Oxford, 1991, p. 1 (Chapter 1.1);
(c) Y. Nishigaichi, A. Takuwa, Tetrahedron 49 (1993) 7395;
(d) J.A. Marshall, Chem. Rev. 96 (1996) 31;
(e) E.J. Thomas, G. Helmchen, R.W. Hoffmann, J. Mulzer, E. Schaumann (Eds.), Stereoselective Synthesis, vol. 3, Georg Thieme, Stuttgart, 1996, p. 1508 (Chapter 1.3.3.3.6);
(f) Y. Yamamoto, Acc. Chem. Res. 20 (1987) 243.
[22] (a) K. Yano, A. Baba, H. Matsuda, Chem. Lett. (1991) 1181;
(b) K. Yano, Y. Hatta, A. Baba, H. Matsuda, Synlett (1991) 555;
(c) K. Yano, A. Baba, H. Matsuda, Bull. Chem. Soc. Jpn. 65 (1992) 66.
[23] (a) S.E. Denmark, G.L. Beutner, J. Am. Chem. Soc. 125 (2003) 7800;
(b) S.E. Denmark, T. Wynn, G.L. Beutner, J. Am. Chem. Soc. 124 (2002) 13405;
(c) S.E. Denmark, J.R. Heemstra Jr., Org. Lett. 5 (2003) 2303.
[24] A. Gambaro, D. Marton, G.J. Tagliavini, Organomet. Chem. 210 (1981) 57.
[25] H. Miyake, K. Yamamura, Chem. Lett. (1992) 1369.
[26] C. Full, S.V. Mortlock, E.J. Thomas, Tetrahedron Lett. 44 (1987) 5343.
[27] D. Hoppe, G. Helmchen, R.W. Hoffmann, J. Mulzer, E. Schaumann (Eds.), Stereoselective Synthesis, vol. 3, Georg Thieme, Stuttgart, 1996, p. 1357 (Chapter 1.3.3).
[28] A.E. Finholt, A.C. Bond Jr., K.E. Wilzbach, H.I. Schlesinger, J. Am. Chem. Soc. 69 (1947) 2692.
[29] W.J. Jones, D.P. Evans, T. Gulwell, D.C. Griffith, J. Chem. Soc. (1935) 39.
[30] (a) W.P. Neumann, J. Pedain, Tetrahedron Lett. (1964) 2491;
(b) T. Kawakami, M. Miyatake, I. Shibata, H. Matsuda, J. Org. Chem. 61 (1996) 376.
[31] Y. Naruta, Y. Nishigaichi, K. Maruyama, Chem. Lett. (1986) 1857.
[32] E. Matarasso-Tchiroukhine, P. Cadiot, J. Organomet. Chem. 121 (1976) 155.
[33] H. Miyake, K. Yamamura, Chem. Lett. (1992) 507.
[34] (a) Y. Kobayashi, M. Nakano, G.B. Kumar, K. Kishihara, J. Org. Chem. 63 (1998) 7505;
(b) H.-J. Wu, C.-C. Lin, J. Org. Chem. 61 (1996) 3820;
(c) P. Bonete, C. Najera, Tetrahedron 51 (1995) 2763.

[^0]: * Corresponding author. Tel.: +8166879 7386; fax: +81668797387.

 E-mail address: shibata@chem.eng.osaka-u.ac.jp (I. Shibata).

